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A Novel Method for Fixed-node Quantum Monte Carlo
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In this paper, a novel method for fixed-node quantum Monte
Carlo is given. By comparing this method with the traditional
fixed-node one, this novel method can be applied to calculate
molecular energy more exactly. An expansion of the eigenval-
ue of the energy for a system has heen derived. It is proved
that the value of the energy calculated using the traditional
fixed-node method is only the zeroth order approximation of
the eigenvalue of the energy. But when using this novel
method, in the case of only increasing less computing amounts
(<1%), the first order approximation, the second order ap-
proximation, and so on can be obtained conveniently withr the
detailed equations and steps in the practical calculation to cal-
culate the values of the zeroth, first and second approximation
of the energies of 1 1A, state of CH,, 'A,(Cyp, acet) state of
C; and the ground-states of H,, LiH, Li,, and H,O The re-
sults indicate that for these states it needs only the second or-
der approximation to obtain over 97% of electronic correla-
tion energy, which demonstrates that this novel method is very
excellent in both the computing accuracy and the amount of
calculation required.
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Introduction

The fixed-node quantum Monte Carlo ( FNQMC)
method is one of the simplest and most widely used
methods in various Monte Carlo procedures of solving
Schrisdinger equation. Some previous literatures'’? re-
ported the comments about FNQMC method. In the prac-
tical calculation for FNQMC method, in general, a mini-
mal basis set of Slater-type atomic orbital (STAO) and

Jastrow functions are taken to constitute a trial function
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in order to decrease the computing amount. But in such
case the accuracy of the calculation is affected. For ex-
ample, the ground-state energy of H,0 molecule calcu-
lated using such trial function in the traditional FNQMC
procedure gave only 43.9% of the electronic correlation
energy. But the electronic correlation energy percentage
obtained using the best CI method® was 81.2% .

In this paper, a novel FNQMC method is given.
The electronic correlation energy percentage obtained us-
ing the novel FNQMC method can be increased until
95—100% , with but very little increase in computation-
al cost { < 1% ). Thus, this novel FNQMC method is
called the exact FNQMC (EFNQMC) method. Two ideas
have been employed in the accomplishment of our goal.
(1) Derivation of an expansion of the eigenvalue of the
energy for a system. It is demonstrated that the value of
the energy calculated using the traditional FNQMC
method is only the first term in this expansion, namely,
the value of the energy calculated using the traditional
FNQMC method is only the zeroth order approximation of
the real value of the energy for a system. (2) Presenta-
tion of the detailed equations and steps used for calculat-
ing the second term, the third term, and so on, in this
expansion. It is interesting that this calculation can be
carried out only using the configurations obtained after a
diffusion process of the traditional FNQMC method has
been completed. Hence, by comparing this novel FN-
QMC method with the traditional FNQMC method, in the
case of almost no increase in the amount of calculation,
the first order approximation, the second order approxi-
mation, and so on, of the real value of the energy can
be calculated conveniently. Therefore, in principle, the
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accuracy for the calculation by EFNQMC method can be
close to 100% .

In order to test the correctness of the novel FNQMC
method, the values of the zeroth, the first and the sec-
ond approximation of the energies of 1 A, state of CH,,
T4 g( Can, acet) state of Cg and the ground-states of H,,
LiH, Li,, and H,O have been calculated using the novel
FNQMC method. The results indicate that for these
states, when using EFNQMC method, it needs only the
second order approximation to obtain over 97% of elec-
tronic correlation energy with the amounts of calculation
required being almost the same as those required when
using the traditional FNQMC method, which demon-
strates that this novel method is very excellent in both

the computing accuracy and the amount of calculation re-
quired.

Calculation
Expansion equation of the eigenvalue of energy

H represents Hamilton operator for a system, and
its eigenfunctions and eigenenergies are $,, E;(i =0,
1,2,+). If ¢, is a trial function for the FNQMC
method, and ¢g is an “exact wave function” which has
the same node structure as that possessed by ¢,, and

possesses “node approximation” > then
(i=0’192"") (1)

Let us define an integral F(¢) containing parameter £,

Con #s)
(on 7

E %ﬁnﬂ
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$ 0, @

= ()
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F(Z) =

It can be proved that if ¢, and ¢g are non-zero over-
lapped with ¢,, then

lim F(t) = E, (3)

>

Eq. (3) can be proved as follows. If both ¢, and ¢ are
expanded with the eigenfunctions, $;, then

oa = 20, s (4)

Py Z ; b;$; (5)

By substituting Eq. (4) and (5) into Eq. (2), the fol- -
lowing equation can be obtained:

o LY
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F(t) =

Z albE; expl - (E; - Eg)t]
Z a;b; exp[ ~ (E; - Eq)t)]

(6)

When the orthonormality of the set of the eigenfunction is
applied to derivation of Eq. (6), then

¥ boE
lim F(7) = 20-bofo
e ao bo
= E, (7)

If ¢, and @ are orthogonal to $,, respectively, and are
non-zero overlapped with ¢;, using the same way, then

Lim F(¢) = E; (8)

The second expression for F(¢) is introduced be-
low. According to the principle on the FNQMC method,3
the whole space can be divided (except for the position
of the nodes) into a number of smaller space elements,
Av, and these smaller space elements can be placed in
each area encircled by the boundary of the node of ¢, .

In each space element, there is
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H(pg), =¢,(pp), 9)

where ¢, is an approximate value of the energy in a space
element, Av. Consequently, F(¢) for the fixed-node

method can be represented as follows:
V(= 0)"
<¢A ,,Z_% n! H™

: )

{4 Z; =4, >
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F(t) =

By analyzing the forms of the numerator and denominator
in Eq. (10), it is evident that F(¢) can be expanded
into the following form;

F(1) = D) expl- ) (11)

Because lim F(¢) —>Ey when t—>o , Eq. (11) can be
further written as

F(t) = E, +_Za,- exp( - Bit) (12)
=0

In Eq. (12), both «; and Bj are coefficients, and B; >

0, thus, by treating Eq. (12) further the following

equation can be obtained;

F(:) = Eo + ZZ[J_QZ(— t)]

= (E0+ Z:,aﬁo 2[ aﬂj g—“L] (13)

Eq. (13) is the second expansion for F(¢). Of course,
it can only be applied to the FNQMC method.
The third expansion for F(¢) is given below. As-

suming
F(¢) = i} (;i,t—XPi (14)

and comparing Eq. (14) with Eq. (2), Eq. (15) can
be obtained ;

pr

(15)

From Eq.(15), Eq. (16) can be derived
Zg—ILH’Hl:[Z;) P][Zg—-t)}H]

= EZ _lt |l+IEPL

i=0 j=0 L:J

(16)
By assuming n = i + j, then, j = n — i. Thus, Eq.

(16) can be written as the following form:
!_ t! > n 2 ﬁn—i
"E Hn+1— z=0(_ t) [gl!(n—l)!Pl]
(17)

By comparing the left side of the equal sign with its right
side for Eq. (17), Eq. (18) can be obtained;

ﬁn+1 : ﬁnripi
1= Z il(n - i)!

n! —0

HO ) H,HP
= n'P +Zol'(n—l)' (18)
Because ﬁo =1, then
- n!
P, = H,,, - n! Z})l,(n_ 1P (19)

Eq. (19) is a recursion equation of P, in the third ex-
pansion, Eq. (14), for F(¢). Because P, = H;, from
Eq.(19) P, can be derived with various ranks below
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P, = H, - (H,)? =
— —_— — Py, - Ey = af3; (25)
P, = H, - 3H,H, + 2(H,)’ om0 ,2 P

P; = H, - 4H;H, - 3(H,)* +
12H,(H,)* - 6(H,)*

P, = Hs - 5H,H, - 10H;H, +
20H;(H,)? + 30(H,)*H, -
60H,(H,)? + 24(H,)’

(20)

Since the P, with various ranks in Eq. (20) has been
established, the third expansion, Eq. (14), for F(¢)
has also be established. From Eq. (3) and (14), Eq.
(21) can be derived:

tim Fo) = [ Py + 33 1]
= Po+ lim[ 3 SR] = By G0
namely

Eo - Py = lim| f_; ﬁ“i—!‘XP,.] (22)

>

It can be seen From Eq. (22) that (Ey — Pgy) has some
function dependency with ( Py, Py,**). Assuming such

function dependency is

Py - Ey = 2fk(P1Pz,“‘) (23)

where fk is some uncertain function form, the function
form below can be established according to the relation
between the second expansion and third expansion for
F(t). Let the second expansion [Eq (13) ] be com-
bined with the third expapsion [Eq. (14)], then

P0+ 2[i“l_'t£l)l] = (E0+ 2&)@?) +
B[S ag]

i=

(24)

By comparing the left side of the equal sign with its right
side for the above equation, Eq. (24), the resultant

equation can be as follows;

Pi= e (i=12,) (26)

=1
For convenience of discussing the following problems, let
Py - Eg

Qo (27)

Qi = Pi (i = 1,2,"')

(28)

By using Eq. (27) and (28), Eq. (23) can be written

as

Qo = kzlﬁc(ol,oz,"') (29)

By combining Eq. (25) and Eq. (26), the following
Eq. (30) can be obtained;

0o = iaﬁf

j=1

(l = 0s192"“) (30)

From Eq. (30) the following parameter,
fined and studied;

S;, can be de-
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In Eq. (31), a; and B; are
and the definitions of A; and B) are as follows:

some certain coefficients,
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It should be noted that both Eq. (31) and (30) have
completely identical form. Thus, it can be thought that
the function dependency between Sy and (S, S,,**)
is completely equivalent to the function dependency be-
tween Qo and (Qy, @z,

), namely
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So= A8, 8, (3)
where those f; in Eq. (33) are also the f; in Eq.

(29), which are some uncertain function forms, which

will be established below.
According to S; = Q;Q;4+2 — Q3.1 Eq. (33) can

be rewritten as

Q002 - Q3 = kZ_;f,,wloa - 03,0,04 - 03,-)

(34)
Namely
Q —ﬁ+lif(00 - 03,004 - 03,-)
0= 02 QZ}.;=1 k 1¥3 2 Y244 3
(35)

By comparing Eq. (35) with Eq. (29), those uncertain
function forms f; can be obtained:

03
f1(01,Q2,+°) = 62 (36)
Fon(01,05,7) = é;f,,(olos -
03,0:04 - Q3,) (k =1,2,-+) (37)

Eq. (37) is a recursion equation for the uncertain func-
tion f; with various ranks. From Eq. (36) and (37)
Eq.(38) can be obtained:

1 (0105 - 03)?

f2(Q1,02,0) = 02 0204 - 03 (38)
Wy L1
Sl @) = 0" 0,0, - &

[(Q105 - 03)(Q30s — 07) - (Q2Q4 - 03)*1?
(0204 - 05)(0406 - 03) - (0105 - QF)*

(39)

From Eq. (27)—(29), and (36)—(39) the expansion
of the eigenvalue of the energy can be obtained for a sys-
tem;

PP 1 (PP-P 1 1
E0=P0-— -_ — 2.
P, P, P,P,-P; P,P,P,- P}
L(PP; - P3)(PyPs - P) - (P,Py - P12

(PP, - P3)(P,Ps — P2) - (P3Ps - P3)?

(40)

Eq. (40) is an equation of calculating the exact energy,
Ey, for a system using the fixed-node method. As can
be seen from Eq. (20), if the values of H, can be ob-
tained with various ranks, the values of P; with various
ranks can also be calculated. Then, the exact value,
Ey, of the energy can be obtained from Eq. (40).

It must be pointed out that because Py = H; and
H, is the value of the energy calculated using the tradi-
tional FNQMC method, this value is only the zeroth ap-
proximation of the exact value of the energy for a system.
It can be seen from Eq. (40) that if the second term,
the third term, and so on, have been calculated, the
first approximation, the second approximation, and so
on, of the exact value of the energy can be obtained for
a system.

EFNGMC method

If ¢, represents a trial function for the fixed-node
method, and g is an “exact wave function” which pos-
sesses the same node structure as that possessed by ¢,
and has “node approximation”, the samples can be tak-

en from the system with f—(P%t after the diffusion

A
Pa
process has been completed according to the fixed-node
method principle. Therefore, the H; defined previously

by us can be calculated as follows

. J(pAH,-qoBdt
H —_—

o _[‘PA%dT
- S0 S gy, (an)

where ¢ represents the configuration obtained after the
diffusion process has reached equilibrium, and E{" is
the local energy for rank i defined in our previous pa-
per.* The following calculation equation was given in
our previous paper.
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Ef*V = EPPE}Y - 0.5VREL - Vnlng, » 7 4EL

(42)
As can be seen from Eq. (40) and (41), calculating
the first approximation, the second approximation, and
so on, of the eigenenergy for a system using EFNQMC
method need not revise the traditional FNQMC program,
but only need calculate them according to the original
FNQMC process. When the diffusion steps end and after
calculating the value of E (Li) (this calculation is essen-
tial. for the traditional FNQMC method), the values of
E; can be calculated for various ranks by the method. It
is evident that an increase in the computing amount can
be completely neglected.

Results and discussion

In order to test the correctness of the novel FNQMC
method, the values of the zeroth, first and second ap-
proximation of the energies of 1 'A; state of CH,, 'A g
(C4y, acet) state of Cz and the ground-states of H,,
LiH, Li,, and Hy,O have been calculated using EFN-
QMC method. The geometrical configurations of these
states were given in the literature.*® HF ] type function
is used as trial function ¢, for EFNQMC method, i.e.

- pip 0Ty
Pa = b'D exP(Z 1+ br,]

i<j

(43)

where D! (V) denotes the up (down) spin-state determi-
nant which is constructed from the molecular orbital
based on a minimal basis set of STO, r; represents the
distance between electrons i and j , a; =1/4 (when i
and j have the same spin) or a; = 1/2 (when i and j
have the contrast spin), and b =1.*

The numbers of the initial configuration taken are
1000 (H,), 5000 (CH,, LiH and Li,) and 10000 (Cg
and H,0), and the time step is 0.005/h (H,), 0.001/
h (CH,, LiH and Li;) and 0.0001/h (Cs and H,0).
The time of calculation required on a P111 computer is
11 min (H;), 92 min (LiH), 135 min (Li,), 185 min
(CH;), 448 min (H,0) and 2356 min (Cg, a PIV
computer) , respectively. The values of the zeroth, first
and second approximation of the energies for these states
calculated using EFNQMC method, &, ¢ and e, are
given in Table 1. For the convenience of comparison,
Table 1 also lists the values of the energies for these
states calculated using H-F, CI and the ordinary FN-
QMC methods.?%'® In addiion, the experimental data,
which are taken from the literatures,®>' of the values

Table 1 Energies (hartrees) of 1 1A1 state of CH,, 1As (C4h, acet) state of Cg and the
ground states of Hy, LiH, Li;, and H,O calculated from several methods

1'4, (CH,) A, (Cyp, acet) H, LiH Li, H,0
Experimental -39.133¢ - 304.361° ~1.17447¢ -8.07021(5)° - 14.9954¢ ~76.4376°
H- F limit —38.8944° -302.477% -1.1336° -7.987¢ - 14.872¢ -76.0675°
Best CI -39.0272¢ - 303.436° -1.1737¢ - 8.0647¢ - 14.903¢ - 76.3683°¢
55.66% 52.34% 98.12% 93.38% 25.12% 81.28%
FNQMC (minimal basis set of STO) —1.1745(8)° - 8.047(5)¢ -14.985(5)° -76.23(2)¢
100% 72.11% 91.57% 43.91%
EFNQMC (this work)
€ -39.092(3) —-304.168(4) -1.1744(3) - 8.0468(2) -14.9818(4) -76.231(2)
82.79% 89.75% 99.83% 71.86% 88.98% 44.17%
§ -39.112(3) -304.25(6) - 8.0691(3) - 14.9901(6) ~76.375(3)
91.07% 92.77% 98.67% 95.71% 83.09%
53 39.128(5) -304.323(8) -14.9933(8) -76.430(3)
97.77% 97.9% 98.29% 97.88%

% Data from Ref. 5; ° Data from Ref. 6; ° Data from Ref. 3.

of these energies are given in Table 1, where the per-
centage listed below each datum is a percentage of the
electronic correlation energy, corresponding to the datum.

It can be seen from the data given in Table 1 that
for 1 1A, state of CH,, 'A, (Cy,, acet) state of Cg and

the ground-states of H, LiH, Li,, and H,0 the calcu-
lation only needs to be in progress until the second ap-
proximation when using our novel FNQMC method. All
the percentages of the electronic correlation energy are
over 97% , much better than the values calculated using
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CI and the traditional FNQMC methods (¢ is the datum
calculated using the traditional FNQMC method). For
example, for LiH, Li, and H;O molecules the best per-
centages of the electronic correlation energy calculated
using CI method are 93.38%, 25.12% and 81.28%,
respectively, and the data of the electronic correlation
energy calculated using the traditional FNQMC method
are only 72.11%, 91.57% and 43.91%, respective-
ly. It is noted that the time spent on the computer when
using EFNQMC method is almost the same as that spent
when using the traditional FNQMC method. This clearly
shows the advantage given with EFNQMC method. It can
also be seen from Table 1 that the percentages of the
electronic correlation energy of 1 'A; state of CH, and
1Ag( Cyp, acet) state of Cg calculated using the tradi-
tional FNQMC method are 82.79% and 89.75%, re-
spectively. It is evident that EFNQMC method is also
very excellent for the excited state and macromolecules.
It is more important that the trial function for EFNQMC
method does not need to be optimized in Monte Carlo
process, and the optimization of the trial function in
Monte Carlo process is very inconvenient and spends too
much time on a computer.’

It must be pointed out that the CMX method® put
forward by Cioslowski is similar to EFNQMC method.
CMX method is also to expand the eigenvalue of energy,
E, into the same progression form of H; (i =1,2,"*),
and then to obtain the approximate value of the energy by
calculating the values of H; (i = 1,2, -+*). But EFN-
QMC method is different from CMX method with the dif-
ferences being: (1) that the definition of H; (i =1,2,
), is different, for CMX method: H; = <¥,| H; ¥,
>/ <W,|¥,>, where V, represents a trial function.
But the definition of H, for EFNQMC method is H; = <
VI H; |V >/ <V, 17, >, where V¥, is an “exact
wave function” which possesses the same node structure
as that possessed by the trial function ¥,, and possesses
node approximation; (2) that H; for EFNQMC method
is calculated after the diffusion has been completed, and
this is very easy to do. But it is very difficult to calcu-
late E for CMX method; (3) that the speed of conver-
gence of the progression for EFNQMC method is much
faster than this for CMX method. This is because the ze-
roth approximation H| of the eigenvalue of the energy,
E, for EFNQMC method is very close to the eigenvalue
of the energy, and CMX method does not possess such

character; (4) that the values ofE (i=1,2,") for
EFNQMC method are limited and can be calculated. If
W, is a trial function for the FNQMC method, and ¥y is
an “exact wave function” which has the same node
structure as that possessed by W,, and possesses the
node approximation, according to the FNQMC method
principle the whole space can be divided (except for the
position of the node) into a number of smaller space ele-
ments, Av, and these space elements can be put in each
area encircled by the boundary of the node of ¥, re-
spectively. For each space element, Av:

H(¥g), = (%), (44)
where €, represents an approximate value of the energy in
a space element, Av. Thus, the value of —IT, is as follows

oo STl H 1 Wy > Zv:(‘I’A)J‘ H,(¥3),Av
i = < W, | ¥ > - Z (W), (W) Av
z (¥a)) (Tp),eiAv
v 45
> (W) (W), (45)

Because each term of calculating the summation in Eq.
(45) is limited, the value of E is also limited and can
be calculated.

As described above, EFNQMC method is a conve-
nient and timesaving one with excellent calculation accu-
racy. This novel method will be able to be expanded to
calculate exactly the energies for the excited state and
macromolecules.
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